
Building C++
Architecting systems with modern C++

Work Contracts - a simple, wait free, asynchronous task management system

[building c++]

[github]

http://www.buildingcpp.com/work_contract.htm
https://github.com/buildingcpp/system


The basics:

A work_contract represents a repeatable task which can be executed an arbitrary number of times.  
The execution of the task is performed asynchronously and is guaranteed to be thread safe.  

work_contracts are associated with a parent work_contract_group and are created using 
work_contract_group::create_contract().

To exercise a work_contract it must first be ‘invoked’.  Invoking a work contract is done using 
work_contract::invoke().  This flags the work_contract as ready to be executed.  Executing an 
invoked work_contract is achieved by worker threads which call 
work_contract_group::execute_next_contract() on the work_contract_group which created
that work_contract.  This worker thread is then responsible for executing the task associated with 
that work_contract.  Once the task has been executed the work_contract returns to the non-
invoked state.

The following demonstrates the creation of a work_contract_group, a work_contract, invoking the
work_contract and executing that work_contract.  For the sake of simplicity, the main thread acts 
as the worker thread.

#include <library/system.h>
#include <iostream>

void foo(){std::cout << “foo\n”;}

int main()
{
    using namespace bcpp::system;

    static auto constexpr max_work_contracts = (1 << 20);
    work_contract_group workContractGroup(max_work_contracts);
    auto workContract = workContractGroup.create_contract(foo);

    workContract.invoke();
    workContractGroup.execute_next_contract();

    return 0;
}

[output]

foo



work_contracts can also optionally define a one-shot surrender task.  As with the primary task, a 
work_contract’s surrender task is performed asynchronously and is guaranteed to be thread safe.  
Surrender tasks are also executed by worker threads which call 
work_contract_group::execute_next_contract().  

Furthermore, the surrender task is guaranteed to be the final task for the work_contract.  Once 
invoked, neither the surrender task, nor the primary work task shall ever be executed again.  It is 
accurate to think of the surrender task as the ‘destructor’ for the work_contract.  The surrender task 
can be explicitly invoked via work_contract::surrender() or, optionally, when the work_contract
is destroyed.

#include <library/system.h>
#include <iostream>

void foo(){std::cout << "foo\n";}
void bar(){std::cout << "bar\n";}

int main()
{
    using namespace bcpp::system;

    static auto constexpr max_work_contracts = (1 << 20);
    work_contract_group workContractGroup(max_work_contracts);
    auto workContract = workContractGroup.create_contract(foo, bar);

    workContract.invoke();
    workContractGroup.execute_next_contract();

    workContract.surrender();
    workContractGroup.execute_next_contract();

    return 0;
}

[output]

foo
bar



Simple example #1:
The basics

The following example demonstrates the basics of creating work contracts and executing them.  
However, since the main thread is both invoking and executing the work contract it is not particularly 
useful.  

Work contracts are intended to be a BYOT (bring your own threads) system.  This design allows the 
user to retain complete control over which thread, which cpu and when a work contract is actually 
executed. 

#include <library/system.h>
#include <iostream>

int main()
{
    // create a work_contract_group
    static auto constexpr max_contracts = (1 << 20);
    bcpp::system::work_contract_group workContractGroup(max_contracts);

    // create a work_contract
    auto workContract = workContractGroup.create_contract(
            [](){std::cout << "contract executed\n";},
            [](){std::cout << "contract surrendered\n";});

    // invoke the work_contract
    workContract.invoke();

    // execute invoked work_contract
    workContractGroup.execute_next_contract();

       // surrender the work_contract
       workContract.surrender();

       // execute invoked work_contract
       workContractGroup.execute_next_contract();

}

[output]

contract executed
contract surrendered



Simple example #2:  
work contracts are repeatable

Work contracts are not “tasks” in the traditional sense.  Work contracts can be executed many times.

#include <library/system.h>
#include <iostream>

int main()
{
    // create a work_contract_group
    static auto constexpr max_contracts = (1 << 20);
    bcpp::system::work_contract_group workContractGroup(max_contracts);

    // create a work_contract
    auto counter = 0;
    auto workContract = workContractGroup.create_contract(
            [&](){std::cout << "contract executed: “ << ++counter << "\n";},
            [](){std::cout << "contract surrendered\n";});

    for (auto i = 0; i < 5; ++i)
    {
        // invoke the work_contract
        workContract.invoke();

        // execute invoked work_contract
        workContractGroup.execute_next_contract();

       }

       // surrender the work_contract
       workContract.surrender();

       // execute invoked work_contract
       workContractGroup.execute_next_contract();

}

[output]

contract executed: 1
contract executed: 2
contract executed: 3
contract executed: 4
contract executed: 5
contract surrendered



Simple example #3:  
invoking an already invoked work contract does nothing

A work contract is in one of two states.  It is either invoked or it is not.  Once a work contract is 
executed this state transitions from invoked to not invoked.  Repeated invocations of an already 
invoked work_contract does nothing to update its state once it is already in the invoked state.

The following example invokes the work contract multiple times prior to executing the work contract.  
The result is a single execution of the work function.

#include <library/system.h>
#include <iostream>

int main()
{
    // create a work_contract_group
    static auto constexpr max_contracts = (1 << 20);
    bcpp::system::work_contract_group workContractGroup(max_contracts);

    // create a work_contract
    auto counter = 0;
    auto workContract = workContractGroup.create_contract(
            [&](){std::cout << "contract executed: “ << ++counter << "\n";},
            [](){std::cout << "contract surrendered\n";});

    for (auto i = 0; i < 5; ++i)
        workContract.invoke();  // invoke the work_contract repeatedly

    // execute invoked work_contract
    workContractGroup.execute_next_contract();

       // surrender the work_contract
       workContract.surrender();

       // execute invoked work_contract
       workContractGroup.execute_next_contract();

}

[output]

contract executed: 1
contract surrendered



Simple example #4:  
The surrender routine:

• The surrender routine is executed asynchronously.
• The surrender routine is executed exactly once.
• Once surrendered, a work contract can no longer by invoked nor re-surrendered.
• A work contract which is surrendered while in the invoked but non-executed state will be have 

its surrender routine executed next.  
• A work contract can be explicitly surrendered via work_contract::surrender() or when the 

work_contract is destroyed.

#include <library/system.h>
#include <iostream>

int main()
{
    // create a work_contract_group
    static auto constexpr max_contracts = (1 << 20);
    bcpp::system::work_contract_group workContractGroup(max_contracts);

    // create a work_contract
    auto workContract = workContractGroup.create_contract(
            [](){std::cout << "contract executed\n";},
            [](){std::cout << "contract surrendered\n";});

    // invoke the work_contract
    workContract.invoke();  

       // surrender the work_contract before executing it
    workContract.surrender();

    // execute invoked work_contract
    workContractGroup.execute_next_contract();
}

[output]

contract surrendered



Example #5:  
Where’s the async?!

So far, for the sake of clarity, the examples have not been asynchronous.  The work contract system is
a “bring your own threads” system.  This is done for the following reasons:

• User can determine which threads will do the work of executing and surrendering contracts.
• User can determine when threads will do this work
• User can determine how many threads will do this work

Note:  the work contract system is lock free and thread safe.  Therefore more than one thread can
invoke a work_contract_group::execute_next_contract() simultaneously thereby processing 
more than one work contract simultaneously.  

NOTE:  A work contract’s work routine is guaranteed to be executed by only one thread at a time 
regardless of how many threads invoke work_contract_group::execute_next_contract() 
simultaneously.

#include <library/system.h>
#include <iostream>

int main()
{
    // create a work_contract_group
    static auto constexpr max_contracts = (1 << 20);
    bcpp::system::work_contract_group workContractGroup(max_contracts);

    // create a worker thread do to the asnyc work 
    std::jthread workerThread([&](auto const & s)
            {while (!s.stop_requested())      
            workContractGroup.execute_next_contract();});

    // create a work_contract
    auto workContract = workContractGroup.create_contract(
            [](){std::cout << "contract executed\n";},
            [](){});

    // invoke the work_contract
    workContract.invoke();  

       // just a demo so give the worker a chance to do the work
    std::this_thread::sleep_for(std::chrono::seconds(1));
}

[output]

contract executed



Architecture, better designs and motivations for work contracts:

The work contract system contains no queues.  It is not intended to be used with numerous short lived
or one time tasks.  It is intended to provide a simple way to connect components with a ‘set it and 
forget it’ mentality such that one component can easily trigger asynchronous activity in another 
component.  It is a system which encourages separation of concerns, push based and event driven 
architectures.  It encourages a ‘tell, don’t ask’ approach to designing software.

As an example, consider a system consisting of two components:  a socket (which receives packets) 
and a parser (which parses the data within those packets).  The two components are connected by a 
queue which contains packets received by the socket but which have not yet been parsed by the 
parser.

A naive ‘task queue’ centric approach might be to create a base ‘task’ class with virtual functions.  
Then create a ‘parse task’ which implements those virtual functions to pop a packet from the queue 
and then invoke parser.parse(packet).  This approach could easily require: 

• the implementation of task classes
• repeated new/delete of those tasks or otherwise require a pool and allocator
• tasks queues; often containing tasks of many kinds - not just the task at hand.
• synchronization for the queues
• encourages a design where the task needs to know how to find the correct parser
• likely can produce one ‘task’ per packet
• offers no protection from multiple ‘task’s being processed on the same parser simultaneously

The above diagram attempts to sketch out the relationships between the various components.  Arrows
indicate which objects require knowledge of other objects.  For instance, the socket would need to 
know (somehow) about the task pool to efficiently allocate a ‘parse task’.  It would also need to know 
about the task queue to enqueue the task as well as the packet queue itself.  The task would require 
knowledge about the packet and parser at execution time.  etc.

Admittedly, the above example is a bit of a straw man but such designs are not entirely uncommon.  
Die instance, it could be argued that the packet is placed within the task thereby eliminating the packet
queue entirely.  But this would create an even more specialized task as well as mandate the the ‘task 
queue’ now be sufficiently sized to contain as many packets as might be expected.  It would also 
further enforce the idea of one task per packet.  

Again, the above example could be viewed as a straw man but such designs are not entirely 
uncommon. 



In contrast, work contracts encourage complete separation of concerns between the socket and the 
parser.  Neither requires knowledge of the other.

It is very likely that the socket and parser are long lived objects and, furthermore, the relationship 
between these two objects is very deterministic.  That is, we know at design time that when a packet is
placed in the queue the parser should remove the packet and parse it.  Work contracts are an 
excellent replacement for the above (admittedly) naive solution.

In a work contract based solution the socket and the parser are completely decoupled.  The socket 
simply pushes packets into the provided queue.  It has no concern for when, where, who, nor what the
fate of those packets might be.

The parser creates the queue and places within it a work contract which is invoked (note: not 
executed) whenever the queue is not empty.  

This work contract, when executed, then dequeues a packet and calls parser.parse(packet).

Such a design would look like this:

• The socket does not create tasks
• The socket has does not require knowledge of the system beyond the queue
• the queue knows nothing of who enqueues packets
• invoking the work contract requires nothing more than an atomic compare/swap of a single bit
• the work contract ensures single threaded execution and therefore ensures the thread safe use

of  parser.parse(packet).



Where’s the beef?!

A simple demo of this entire system can be implemented with a single page of code:

using namespace bcpp::system;

struct packet{};

struct queue

{

    queue(work_contract workContract):workContract_(std::move(workContract)){}

    void push(packet p){queue_.push(p); workContract_.invoke();}

    packet pop(){auto p = queue_.front(); queue_.pop(); return p;}

    work_contract workContract_;

    std::queue<packet> queue_;

};

struct parser

{

    parser(work_contract_group & wcg):

    queue_(std::make_shared<queue>(wcg.create_contract([this](){parse();}))){}

    void parse(){auto packet = queue_->pop(); std::cout << "parsing packet\n";}

    std::shared_ptr<queue> queue_;

};

struct socket

{

    socket(std::shared_ptr<queue> q):queue_(q){}

    void receive(){std::cout << "receiving packet\n"; queue_->push(packet{});}

    std::shared_ptr<queue> queue_;

};

int main()

{

    work_contract_group wcg(256);

      parser p(wcg);

      socket s(p.queue_);

      std::jthread workerThread([&](std::stop_token stopToken)

          {while (!stopToken.stop_requested()) wcg.execute_next_contract();});

      s.receive();

      std::this_thread::sleep_for(std::chrono::seconds(1));

      workerThread.request_stop();

    return 0;

}

[output]

receiving packet 
parsing packet



Performance, scheduling and fairness:

The work contract system is lock free.  At its core, a work_contract_group manages a collection of 
work_contracts using a binary heap structure with the work_contracts at the leaf nodes.  Each non-leaf
node is an atomic count representing how many ‘child’ leaf nodes are in the ‘invoked’ state.  Invoking a
work contract involves traversing the binary tree from the leaf to the root, incrementing the count along
the way.  Similarly, locating an ‘invoked’ work contract involves navigating from the root to a leaf node 
while decrementing the count along the way.

Therefore, both invoking and executing a work contract each require log^2(n) successful atomic 
compare exchange calls to complete.  Contention arises toward the root of the tree where it is more 
likely that multiple threads are competing to adjust the same atomic counters.

Each call to work_contract_group::execute_next_contract() increments an ‘inclination’ 
counter who's bits are used to create a preference for choosing to traverse to a left or right child node 
in the case where both child nodes have non zero counts.  This monotonically increasing ‘inclination’ 
counter ensures that all leaf nodes will be fairly selected and that starvation can not occur.  To 
increase fairness, work contracts are inserted into the binary heap in such a way as to create a more 
balanced binary heap than that which existed prior to the work contract’s insertion into the heap.  
However, work contracts can be surrendered which remove them from the binary heap and rapid 
removal of work contracts could, if unfortunately selected, lead to a significantly unbalanced binary 
heap.  Future work will involve identifying when the struct is significantly unbalanced and will balance 
as needed by relocating work contracts within the heap as they are executed.  Re-balancing is a very 
lightweight process and should not be required very often given the longevity of work contracts and 
because it is unlikely that the binary heap will unbalanced in general.

With regards to performance the main goals of the work contract system are:

• high throughput
• extremely reliable fairness

To measure these the throughput a benchmark was created which times how many times a trivial task 
can be invoked within a fixed duration of time.  The benchmark runs 10 times.  Each run increases the
number of worker/consumer threads by one.  Each task is immediately re-scheduled as the task in 
executed.  Additionally, each unique task is associated with a counter which tracks how many times 
that unique task has been executed during the test. This metric is used to calculate the mean number 
of task executions, the standard deviation as well as coefficient of variation.  A lower coefficient of 
variation indicates that tasks were executed more evenly (fairly).  A higher coefficient of variation 
indicates that some tasks were executed more often (less fairly) than other tasks.

The benchmark compares the results for the tests using work contracts as well more a traditional 
mpmc task queue design.  In this case, ConcurrentQueue from MoodyCamel is used to provide a well 
documented and efficient lock free mpmc queue to compare against work contracts.

The test runs for 10 seconds per pass, increases the number of worker threads by one with each pass
and operates on 256 concurrently active tasks throughout each pass.  The test machine is a AMD 
Ryzen 9 3900 12-Core Processor.  Hyper-threading has been disabled and each worker thread has its
cpu affinity set to a unique cpu.

The task itself is designed to consume only a small amount of CPU time (around 1 usec) and avoid 
using any resources which could cause cache contention.



The task:

std::int32_t work_function()

{

    auto t = 0;

    for (auto i = 0; i < (1 << 8); ++i)

        t += std::to_string(i).size();

    return t;

};

work contracts 
thread count total tasks tasks per thread

per second
mean standard deviation coefficient of

variation

1 10,734,100 1,073,400 41,930 0.367 0.000

2 20,665,131 1,033,246 80,723 4,545.304 0.056

3 30,784,074 1,026,128 120,250 1,346.214 0.011

4 35,543,546 888,582 138,841 1,762.597 0.013

5 43,474,273 869,478 169,821 3,906.835 0.023

6 51,572,160 859,528 201,453 2,325.401 0.012

7 58,215,048 831,636 227,402 3,879.622 0.017

8 59,854,444 748,174 233,806 3,281.332 0.014

9 68,355,238 759,495 267,012 2,954.879 0.011

10 72,702,103 727,014 283,992 2,851.247 0.010

MPMC queue (using MoodyCamel ConcurrentQueue) 
thread count total tasks tasks per thread

per second
mean standard deviation coefficient of

variation

1 11,088,294 1,108,819 43,313 43,398 1.002

2 21,081,395 1,054,061 82,349 58,172 0.706

3 30,888,815 1,029,620 120,659 137,082 1.136

4 31,717,938 792,943 123,898 118,731 0.958

5 40,462,459 809,243 158,056 152,179 0.963

6 47,324,498 788,736 184,861 178,127 0.964

7 44,450,647 635,004 173,635 164,720 0.949

8 53,400,419 667,501 208,595 197,903 0.949

9 56,937,117 632,630 222,410 210,336 0.946

10 55,269,915 552,695 215,898 198,539 0.920



Tasks per second for 256 concurrent repeating tasks:

Number of Threads                        

Fairness: Coefficient of variation for 256 concurrent repeating tasks (smaller is better):

Number of Threads                        


